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In this paper functional analytic methods for nuclear locally convex spaces
are applied to problems of analytic functions. The question is discussed whether
the so-called Newton interpolation polynomials constitute a Schauder-basis in
the space of analytic functions on the open unit circle (see Markusevic [3]).
There are several different approaches to this problem, see, for instance, Walsh [7]
and Gelfond [1]. Here we give a necessary and sufficient condition in terms of
the interpolation points only. We consider the above space of analytic functions
as a nuclear Ko-the-sequence space and use some deep theorems about nuclear
spaces, such as the theorem of Dynin and Mitjagin (see Rolewicz [6], Pietsch
[5]). An interesting connection with the theory of uniformly distributed sequences
is mentioned.

1

We start with some general considerations:
Let (a""n)""nENo be a real, strictly positive valued infinite matrix such that

a",+l,n ;? a""n for m, n = 0, 1,2,.... The Kothe-space !V[a""n] (I :s;; p :s;; 00)

is the space of all complex sequences g = (gn)~~o for which g'l", =

(L:~o an,,,, I gn IV) < 00 for I :s;; p < 00 and II gil", = SUPn a""n I gn < 00

for p = 00, with a topology given by the norms II . II", .
The Kothe-space [P[a""n] is nuclear if and only if for each m E No there

exists an integer kENo such that

'"' am..n
~ < 00.

n=O am+k.n

(See Mitjagin [4].) If this condition is fulfilled, then the space fl[am,n] is
identical with the space [""[am,n] (see Rolewicz [6]). We restrict our interest to
the space [l[a""n]' A biorthogonal system {ei ,/;}, where ei = (ei.n)~~o E

[l[am,n], /; = (/;,n)~~o E (fl[am,n])', and j;(ej) = Ou is complete, if the finite
linear combinations of the sequences {ei} are dense in f1[a""n]'
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PROPOSITION. Let [l[am•n] be a nuclear Kothe-space. A complete biortho­
gona[ system {ei,fJ constitutes a Schauder-basis for [l[am •n] if and only if,
for each mE No • there exists an integer [E No such that

(1)

The proof of this proposition follows immediately from Theorem 1 in [2]
and depends on the theorem of Dynin and Mitjagin, which says that each
Schauder-basis of a nuclear (F)-space is absolute (i.e.• the basis expansion
converges absolutely).

2

Let £1 be the space of analytic functions on the disk Iz! < 1. We define
the topology of £1 by the norms Ilfllm = sup{! j(z)1: Iz! = exp(-11m)} for
fE £1 and m E No. Let am .n = II zn 11m = exp(-nlm). Then £1 is isomorphic
to [""[am .n]. the isomorphism given by the formula T(L.:~o cnzn) = (cn):~o .

It is easily seen that [""[amon] is a nuclear space; thus we may say that £1 is
isomorphic to [l[am .n ].

Now we consider Newton's interpolation polynomials. Let (xn):~o be a
sequence of points lying in the disk Iz! < I. We define:

Po(Z) = 1,

and so on. The corresponding sequences in ll[am •n ] are given by

eo = (1.0,0, ...),

e l = (~XI' 1,0,0,...),

e2 = (XIX2 , -(Xl + x 2). 1,0,0, ...),

ea = (-XIX2Xa , XIX2 + XlXa + X 2X a • -(Xl + X2 + xa). 1.0.0,...),

and so on. We write ei = (ei.n):~o and observe that the elements ei.n are the
elementary symmetric functions of the variables Xl , ... , Xi for i > n. and that
they are 1 for i = n and zero for i < n.

The biorthogonal system of functionals for the vectors ei is given by

fo = O. Xl , X1
2, x l

a• XI4....)'

h = (0, 1, Xl + X 2 • X1
2 + XIX2 + X 2

2
, x l

a + Xl
2X2 + Xl X2

2 + x2
a,oo.).

f2 = (0,0. 1, Xl + X 2 + Xa , Xl
2 + XIX2 + XlXa + X2Xa + X 2

2 + Xa2, ...),
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and so on. Setting h = (h,k)'{)~O' we observe that h,k is zero for k < i,
h.k is I for k = i and h.k is the sum of all possible (also mixed) (k - i)th
powers of the elements Xl'"'' X i +l for k > i.

We can now state the main result.

THEOREM. Newton's interpolation polynomials constitute a Schauder-basis
in the space £1 ifand only if, for the interpolation points (Xn}~~l , the following
conditions holds: For each m E' No there exists an integer I E' No such that

(
, I' I (' k) ~! ' (' n + 1 )') .-

S,~P IJi,k;exp T ,f::oie,.nlexP ~-J-l1-" ~ 00. (2)

By the above remarks, this theorem is an immediate consequence of the
proposition of part I.

Let (Xn)~~l be a null-sequence in the disk I z I < I and let m E' No be a
fixed index. For each E > 0, there exists an N E' N with! X n [ < E for n > N;
further, we assume SUPn I X n I = p < I.

For h,k this yields

for i < N, k ~ i,IIi.k I < (~) pk-i

Ih,k I < :~~ (N -+-;~ /~l~ '- h)(i - N~ I + h) pl.-i-hEh

On the other hand, we have

i ( n+l)L I ei,n I exp- -m-
n=O

(3)

for i N.

(4)

( I)( (1 ). N( ( I) )i-N< exp - m p + exp - m) exp - m + E • (5)

By some combinatorial computations, one shows that (2) holds, i.e., Newton's
interpolation polynomials constitute a Schauder-basis in the space £1 .

If one of the interpolation points has absolute value I, then Newton's
interpolation polynomials are not a Schauder-basis. To show this, we may
assume I Xl I = I. A sequence I = (.fn)~~o is an element of the dual space
(fl[am,n])' if and only if there exists an I E' No such that

sup (Ilk l/al,k) < 00.
k

In our case, this yields for the sequence fo = (1, Xl' X 1
2, X 1

3,,,.),

(6)

sup (I fO,k I/al,k) = sup exp(k/I) = 00
k k

for each I E' No .
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If the interpolation points are uniformly distributed on a circumference
I z I = r < I, then the corresponding Newton's interpolation polynomials
constitute a Schauder-basis, i.e., (2) is satisfied for uniformly distributed
sequences (see Walsh [7]).
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